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Codesign in Action for Experimental Science 
Computing: Architectures, Systems, and 
Testbeds
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Advanced Computing Lab

Unique collaborative testbed facility with 
access to live, actual data from diverse 

experiments, such as CFN (microscopy), 
NSLS-II, and RHIC, for codesign of 

architectures and experimental workflows.

Experimental Science Workflows AI-based Modeling and Simulation
Leading the charge with SimNet and PerfVec

Accurate simulation faster by orders of magnitude 
compared with Discrete-Event Simulation

Extreme data challenges, 
heterogeneity, 
large spectrum of 
spatial and temporal 
computing scales from 
the edge to the 
extreme – real-time to 
long computational 
campaigns. 

SimNet: AI-based architecture simulation https://github.com/lingda-li/simnet

PerfVec: AI-based Architecture modeling https://github.com/PerfVec/PerfVec

Li, L. S. Pandey, T. Flynn, H. Liu, N. Wheeler, and A. Hoisie. 2022. 
SimNet: Accurate and High-Performance Computer Architecture 
Simulation using Deep Learning. POMACS 6(2):Article 25. DOI: 

10.1145/3530891.

Pandey, S., L. Li, T. Flynn, A. Hoisie, and H. Liu. 2022. Scalable Deep 
Learning-Based Microarchitecture Simulation on GPUs. SC22, pp. 1-15. 

DOI: 10.1109/SC41404.2022.00084.



Performance Prediction Methods: 
Speed versus Accuracy
Smart Modeling and Simulation for HPC (SMaSH) is an intricate challenge because of 

the complexity of the design space.
Methodologies exist that lack either practicality or accuracy.

Discrete event (DE) simulation is slow:
• For example, gem5 simulates a modern microprocessor at several hundreds of KIPS.
• Not practical for realistic architectures and workloads.
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Speed Accuracy Flexibility
Analytical Modeling Fast Low Low

Emulation Fast High (?) Very low

Discrete Event Simulation Slow High High

Machine Learning (ML)-based Simulation Medium High Medium

ML-based Modeling Fast High High

GOAL: Accelerate Accurate Architecture Simulation by Two Orders of Magnitude
Many



Machine Learning (ML)-based 
Simulation Foundation
Goal: Predict 
Instruction Latencies
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A New Path: ML-based Simulation
Explore ML’s application in computer architecture simulation:
ML has shown great success in many domains.
• ML models are excellent function approximators.

ML is highly regular and parallel.
• Modern accelerators (e.g., GPUs and TPUs) are well optimized for ML.
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We offer the first ML-based computer 
architecture simulator: SimNet

Li et al. SimNet: Accurate and High-Performance Computer Architecture Simulation using Deep Learning. SIGMETRICS, 2022.
Pandey et al. Scalable Deep Learning-Based Microarchitecture Simulation on GPUs. SC22, 2022.



Generic Performance Modeling
A generic performance model should separate the impact of program 

and microarchitecture.
 When one party changes, there is no need to remodel the other.
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Li, Flynn, Hoisie. Learning Independent Program and Architecture Representations for Generalizable 
Performance Modeling. https://arxiv.org/abs/2310.16792.

PerfVec isolates the performance impact of 
program and microarchitecture using 

separate ML models. 

independent
representations

https://arxiv.org/abs/2310.16792


Hierarchical, AI-enabled Modeling and 
Optimization of Future Supercomputers
Goal: Develop a modular and 
hierarchical modeling 
framework to explore and 
optimize system-level 
impacts of beyond-CMOS 
technologies
• Superconducting accelerators
• Dense linear algebra 

applications
• AI-enabled analytical 

modeling and simulation 
across abstraction levels

7Lingda Li and Adolfy Hoisie with collaborators from the University of Texas at Austin



ML-enhanced Modeling
ML-based primitive-level 
surrogate accelerator models
• Train fast and accurate surrogate 

using traditional simulators
• Primitive operations directly executed 

by the accelerator, e.g., fixed-size 
matrix multiplication, data movement

• Large operations (e.g., GEMM) are 
decomposed into primitives

Integrate with ML-based and/or 
analytical models of other 
node/system-level components
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ML-enhanced Design Space Exploration 
(DSE)
Challenge: expensive to navigate through large design space 

aggravated by superconducting accelerators
Solution: implement gradient-based optimization
• Requires model hierarchy to be differentiable (ML or analytical)
• More efficient compared to traditional DSE approaches, such as 

evolutionary algorithms (EA) and reinforcement learning (RL)
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Real-time Data Reduction
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Challenge: The Electron-Ion Collider (EIC) subsystem has a high 
noise/background rate that requires real-time data reduction computationally: 
dRICH, far detectors, calorimeters
Solution: Provide a specialized algorithm and hardware for efficient and high-
throughput real-time AI data reduction

Streaming DAQ
• New physics capability accessible only 

via streaming DAQ
• Example: adopted for sPHENIX and EIC
• Requires data reduction computationally

NP Physics
• Diverse topology
• Stringent system Ctrl
• Max data preservation

Opportunities for AI Enhancement
• Specialized AI algorithm for reliable 

and high-performance data reduction
• Novel hardware emerging for high-

throughput  AI computing

Physics need → Streaming DAQ → Opportunity for real-time AI → Enhanced physics program
Jin Huang and Yuhui (Ray)Ren



Step 1: Real-time AI Algorithm
Bicephalous Convolutional Autoencoder (BCAE) that 

performs data compression and noise filtering in one step:
• Validating on (simulated) sPHENIX TPC 3D voxel data
• *Paper award at Data Reduction Workshop (SC23) 
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Half precision 

Full precision 

per NV RTX A6000 GPU

BNL Retreat on 
AI/ML for EIC

BCAE Architecture

*Huang et al. SC23, DOI: 10.1145/3624062.3625127 arXiv:2310.15026

Jin Huang
Yuhui (Ray) Ren



Step 2: Real-time AI Accelerator
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A new family of AI chips is emerging with non-von Neumann 
architectures. 
BCAE test on GraphCore IPU and Groq Card 

First installation of AI chip in experiment: 
tenstorrent n300s, 240 MB SRAM, 
540 TFLOPS for FP8, 160 RISC-V cores

GPU RTX A6000 

FPGA 
(With SBU CS)

GPU L40S 

GPU 6000 ADA 

AI-chip n300s
(tenstorrent)

Real-time AI Test Stand 
Deployed in sPHENIX IR on DAQ network

Jin Huang and Yuhui (Ray)Ren
BNL Retreat on AI/ML for EIC

*Huang et al. SC23, DOI: 10.1145/3624062.3625127 arXiv:2310.15026



Summary
• Vibrant portfolio of activities in multiple dimensions of the Novel 

Architectures for AI space
• Research funded by multiple agencies and sources: Department 

of Energy, Department of Defense and Laboratory Directed 
Research and Development.

• Motivated by challenges posed by the experimental science 
workflows

• Synergy with SBU’s research as evidenced by collaborations and 
high-bandwidth interactions – with significant room to expand
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